
Optimization in Data Analysis:
Some Recent Developments

Stephen Wright (UW-Madison)

VWCO, Vienna, December 2018

Wright (UW-Madison) Optimization and Data Analysis October 2018 1 / 40

Outline

Context: Data Analysis, Machine Learning (ML), Data Science

Formulating 13 ML applications as continuous optimization

Deep Neural Nets (DNN)

5 recent issues in ML and optimization:

1 The “Adam” variant of stochastic gradient.
2 Discrete optimization for training DNNs.
3 Adversarial ML
4 Overparametrization in DNNs.
5 Reinforcement learning and control

Wright (UW-Madison) Optimization and Data Analysis October 2018 2 / 40

Data Science
Related Terms: AI, Data Analysis, Machine Learning, Statistical Inference,
Data Mining.

Extract meaning from data: Understand statistical properties, learn
important features and fundamental structures in the data.

Use this knowledge to make predictions about other, similar data.

Highly multidisciplinary area!

Foundations in Statistics;

Computer Science: AI, Machine Learning, Databases, Parallel
Systems, Architectures (GPUs);

Optimization provides a toolkit of modeling/formulation and
algorithmic techniques.

Modeling and domain-specific knowledge is vital: “80% of data analysis is
spent on the process of cleaning and preparing the data.”
[Dasu and Johnson, 2003].

Wright (UW-Madison) Optimization and Data Analysis October 2018 3 / 40

The Age of Data

New “Data Science Centers” at many institutions, new degree programs
(e.g. Undergrad Majors and MS in Data Science), new funding initiatives

Huge amounts of data are collected, routinely and continuously.

I Consumer and citizen data: phone calls and text, social media
apps, email, surveillance cameras, web activity, online shopping,
repositories of survey data and texts,...

I Scientific data: particle colliders, satellites, biological / genomic,
astronomical.

Powerful computers and new specialized architectures make it
possible to handle larger data sets and analyze them more thoroughly.

Methodological innovations in some areas. e.g. Deep Learning.

I Speech recognition
I AlphaGo: Reinforcement Learning for Go
I Image recognition

Wright (UW-Madison) Optimization and Data Analysis October 2018 4 / 40

Typical Setup
After cleaning and formatting, obtain a data set of m objects:

Vectors of features: aj , j = 1, 2, . . . ,m.

Outcome / observation / label yj for each feature vector.

The outcomes yj could be:

a real number: regression

a label indicating that aj lies in one of M classes (for M ≥ 2):
classification

multiple labels: classify aj according to multiple criteria.

no labels (yj is null):

I subspace identification: Locate low-dimensional subspaces that
approximately contain the (high-dimensional) vectors aj ;

I clustering: Partition the aj into a few clusters.

(Structure may reveal which features in the aj are important /
distinctive, or enable predictions to be made about new vectors a.)

Wright (UW-Madison) Optimization and Data Analysis October 2018 5 / 40

Fundamental Data Analysis Task

Seek a function φ that:

approximately maps aj to yj for each j : φ(aj) ≈ yj , j = 1, 2, . . . ,m.

(if no labels yj , or if some labels are missing, φ assigns each aj to a
cluster or subspace.)

satisfies additional properties that make it “plausible” for the
application, robust to perturbations in the data, generalizable to
other data samples.

Can usually define φ in terms of some parameter vector x — thus
identification of φ becomes a data-fitting problem: Find the best x .

Objective function in this problem often built up of m terms that capture
mismatch between predictions and observations for data item (aj , yj).

The process of finding φ is called learning or training.

Wright (UW-Madison) Optimization and Data Analysis October 2018 6 / 40

What’s the use of the mapping φ?

Prediction: Given new data vectors ak , predict outputs yk ← φ(ak).

Analysis: φ — especially the parameter x that defines it — reveals
structure in the data. Examples:

I Feature selection: reveal the components of vectors aj that are
most important in determining the outputs yj .

I Uncovers some hidden structure, e.g.
F low-dimensional subspaces that contain the aj (approx);
F find clusters of aj ’s;
F find a decision tree that builds intuition about how yj

depends on aj .

Many possible complications:

Noise or errors in aj and yj ;

Missing data: elements of aj and/or yj ;

Overfitting: φ exactly fits the set of training data (aj , yj) but predicts
poorly on “out-of-sample” data (ak , yk).

Wright (UW-Madison) Optimization and Data Analysis October 2018 7 / 40

1

1https://blogs.sas.com/content/subconsciousmusings/2017/04/12/

machine-learning-algorithm-use/
Wright (UW-Madison) Optimization and Data Analysis October 2018 8 / 40

https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

There’s a lot of continuous optimization here (yellow)!

Wright (UW-Madison) Optimization and Data Analysis October 2018 9 / 40

Application I: (Linear) Least Squares

min
x

f (x) :=
1

2

m∑
j=1

(aTj x − yj)
2 =

1

2
‖Ax − y‖2

2.

[Gauss, 1799], [Legendre, 1805]; see [Stigler, 1981].

Here the function mapping data to output is linear: φ(aj) = aTj x .

`2 regularization reduces sensitivity of the solution x to noise in y .

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖2
2.

`1 regularization yields solutions x with few nonzeros:

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1.

Feature selection: Nonzero locations in x indicate important
components of aj .

Wright (UW-Madison) Optimization and Data Analysis October 2018 10 / 40

Application II: Robust Linear Regression
Least squares assumes Gaussian errors in yj . When error distributions are
otherwise, or contain “outliers,” need different formulations.

Use statistics to write down a likelihood function for x given y , then find
the maximum likelihood estimate — optimization!

min
x

m∑
j=1

`(aTj x − yj) + λR(x)

where ` is loss function and R is regularizer.

Can lead to logistic regression (see later), which is convex. But some
models lead to nonconvexity in the loss function and/or regularizer term.

Tukey biweight: `(θ) = θ2/(1 + θ2). Behaves like least squares for θ
close to 0, but asymptotes at 1. Outliers don’t affect solution much.

Nonconvex separable regularizers R such as SCAD and MCP behave
like ‖ · ‖1 at zero, but flatten out for larger x .

Wright (UW-Madison) Optimization and Data Analysis October 2018 11 / 40

Application III: Matrix Completion
Regression over a structured matrix: Observe a matrix X by probing it
with linear operators Aj(X), giving observations yj , j = 1, 2, . . . ,m.

min
X

1

2m

m∑
j=1

(Aj(X)− yj)
2 =

1

2m
‖A(X)− y‖2

2.

Each Aj may observe a single element of X , or a linear combination of
elements. Can be represented as a matrix Aj , so that Aj(X) = 〈Aj ,X 〉.

Seek the “simplest” X that satisfies the observations, e.g. low rank.

Add a nuclear-norm (sum-of-singular-values) regularization term
λ‖X‖∗ for some λ > 0 [Recht et al., 2010]

Explicit low-rank parametrization (nonconvex):

min
L,R

1

2m

m∑
j=1

(Aj(LR
T)− yj)

2.

Wright (UW-Madison) Optimization and Data Analysis October 2018 12 / 40

Application IV: Nonnegative Matrix Factorization

Given m × n matrix Y , seek factors L (m × r) and R (n × r) that are
element-wise positive, such that LRT ≈ Y .

min
L,R

1

2
‖LRT − Y ‖2

F subject to L ≥ 0, R ≥ 0.

Applications in computer vision, document clustering, chemometrics, . . .

Could combine with matrix completion, when not all elements of Y are
known, if it makes sense on the application to have nonnegative factors.

If positivity constraint were not present, could solve this in closed form
with an SVD, since Y is observed completely.

Wright (UW-Madison) Optimization and Data Analysis October 2018 13 / 40

Application V: Sparse Inverse Covariance
Let Z ∈ Rp be a (vector) random variable with zero mean. Let
z1, z2, . . . , zN be samples of Z . Sample covariance matrix (estimates
covariance between components of Z):

S :=
1

N − 1

N∑
`=1

z`z
T
` .

Seek a sparse inverse covariance matrix: X ≈ S−1.

X reveals dependencies between components of Z : Xij = 0 if the i and j
components of Z are conditionally independent, i.e. don’t influence each
other directly.

Obtain X from the regularized formulation:

min
X
〈S ,X 〉 − log det(X) + λ‖X‖1, where ‖X‖1 =

∑
i ,j |Xij |.

[d’Aspremont et al., 2008, Friedman et al., 2008].
Wright (UW-Madison) Optimization and Data Analysis October 2018 14 / 40

Application VI: Sparse Principal Components (PCA)

Seek sparse approximations to the leading eigenvectors of the sample
covariance matrix S .

For the leading sparse principal component, solve

max
v∈Rn

vTSv = 〈S , vvT 〉 s.t. ‖v‖2 = 1, ‖v‖0 ≤ k ,

for some given k ∈ {1, 2, . . . , n}. Convex relaxation replaces vvT by an
n × n positive semidefinite proxy M:

max
M∈SRn×n

〈S ,M〉 s.t. M � 0, 〈I ,M〉 = 1, ‖M‖1 ≤ R,

where | · |1 is the sum of absolute values [d’Aspremont et al., 2007].

Adjust the parameter R to obtain desired sparsity.

Wright (UW-Madison) Optimization and Data Analysis October 2018 15 / 40

Application VII: Sparse + Low-Rank
Given Y ∈ Rm×n, seek low-rank M and sparse S such that M + S ≈ Y .

Robust PCA: Sparse S represents “outlier” observations.

Foreground-Background separation in video processing.
I Each column of Y is one frame of video, each row is a single

pixel evolving in time.
I Low-rank part M represents background, sparse part S represents

foreground.

Convex formulation [Candès et al., 2011, Chandrasekaran et al., 2011]:

min
M,S
‖M‖∗ + λ‖S‖1 s.t. Y = M + S .

Compact formulation (nonconvex): Variables L ∈ Rn×r , R ∈ Rm×r ,
S ∈ Rm×n sparse.

min
L,R,S

1

2
‖LRT + S − Y ‖2

F + λ‖S‖1

Wright (UW-Madison) Optimization and Data Analysis October 2018 16 / 40

Application VIII: Subspace Identification
Given vectors aj ∈ Rn with missing entries, find a subspace of Rn such
that all “completed” vectors aj lie approximately in this subspace.

If Ωj ⊂ {1, 2, . . . , n} is the set of observed elements in aj , seek X ∈ Rn×d

such that
[aj − Xsj]Ωj

≈ 0,

for some sj ∈ Rd and all j = 1, 2,
[Balzano et al., 2010, Balzano and Wright, 2014].

Application: Structure from motion. Reconstruct opaque object from
planar projections of surface reference points.

Wright (UW-Madison) Optimization and Data Analysis October 2018 17 / 40

Application IX: Linear Support Vector Machines

Each item of data belongs to one of two classes: yj = +1 and yj = −1.

Seek (x , β) such that

aTj x − β ≥ 1 when yj = +1;

aTj x − β ≤ −1 when yj = −1.

The mapping is φ(aj) = sign(aTj x − β).

Design an objective so that the jth loss term is zero when φ(aj) = yj ,
positive otherwise. A popular one is hinge loss:

H(x , β) =
1

m

m∑
j=1

max(1− yj(a
T
j x − β), 0).

Add a regularization term (λ/2)‖x‖2
2 for some λ > 0 to maximize the

margin between the classes.

Wright (UW-Madison) Optimization and Data Analysis October 2018 18 / 40

Regularize for Generalizability

Wright (UW-Madison) Optimization and Data Analysis October 2018 19 / 40

Regularize for Generalizability

Wright (UW-Madison) Optimization and Data Analysis October 2018 19 / 40

Regularize for Generalizability

Wright (UW-Madison) Optimization and Data Analysis October 2018 19 / 40

Regularize for Generalizability

Wright (UW-Madison) Optimization and Data Analysis October 2018 19 / 40

Regularize for Generalizability

Wright (UW-Madison) Optimization and Data Analysis October 2018 19 / 40

Application X: Kernel SVM
Data aj , j = 1, 2, . . . ,m may not be separable neatly into two classes
yj = +1 and yj = −1. Apply a nonlinear transformation aj → ψ(aj)
(“lifting”) and do linear classification on (ψ(aj), yj): Find (x , β) such that

min
x ,β

1

m

m∑
j=1

max(1− yj(ψ(aj)
T x − β), 0) +

1

2
λ‖x‖2

2.

Can avoid defining ψ explicitly by using instead the dual:

min
α∈Rm

1

2
αTQα− eTα s.t. 0 ≤ α ≤ (1/λ)e, yTα = 0.

where Qk` = yky`ψ(ak)Tψ(a`), y = (y1, y2, . . . , ym)T , e = (1, 1, . . . , 1)T .

No need to choose ψ(·) explicitly. Instead choose a kernel K , such that

K (ak , a`) ∼ ψ(ak)Tψ(a`).

[Boser et al., 1992, Cortes and Vapnik, 1995]. “Kernel trick.”
Wright (UW-Madison) Optimization and Data Analysis October 2018 20 / 40

Application XI: Logistic Regression
Binary logistic regression is similar to binary SVM, except that we seek a
function p that gives odds of data vector a being in class 1 or class −1,
rather than making a simple prediction.

Seek odds function p parametrized by x ∈ Rn:

p(a; x) := (1 + ea
T x)−1.

Choose x so that p(aj ; x) ≈ 1 when yj = 1 and p(aj ; x) ≈ 0 when yj = −1.

L(x) = − 1

m

 ∑
yj=−1

log(1− p(aj ; x)) +
∑
yj=1

log p(aj ; x)


Can sparsify by including λ‖x‖1 in the objective. Generalizes to multiple
classes (more than 2): softmax. e.g. identify images, or phonemes in
speech. This usually forms the “final layer” of a neural net.

Wright (UW-Madison) Optimization and Data Analysis October 2018 21 / 40

Application XII: Atomic-Norm Regularization

Seek an approx minimizer of f (x) such that x combines a small number of
fundamental elements — atoms. Define the atomic norm of x via its
“minimal” representation in terms of the set A of atoms (possibly infinite):

‖x‖A := inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0

}
.

Compressed Sensing: x ∈ Rn: atoms are ±ei , where
ei = (0, 0, . . . , 0, 1, 0, . . . , 0)T ; then ‖x‖A = ‖x‖1.

Low-rank Matrix Problems: x ∈ Rm×n: atoms are the rank-one
matrices (infinite); then ‖ · ‖A is the nuclear norm.

Signal processing with few frequencies: x(t) =
∑k

j=1 cj exp(2πifj t):
signal with k frequencies. Atoms are af := exp(2πift) for any f .

Image processing using wavelets: Atoms are subtrees of wavelet
coefficients.

Wright (UW-Madison) Optimization and Data Analysis October 2018 22 / 40

Application XIII: Community Detection in Graphs
Given an undirected graph, find “communities” (subsets of nodes) such
that nodes inside a given community are more likely to be connected to
each other than to nodes outside that community.

Probability p ∈ (0, 1) of being connected to a node within your community,
and q ∈ (0, p) of being connected to a node outside your community.

Leads to a matrix optimization problem: relaxation of a
maximum-log-likelihood formulation.

Wright (UW-Madison) Optimization and Data Analysis October 2018 23 / 40

Application XIII: Community Detection in Graphs
Given an undirected graph, find “communities” (subsets of nodes) such
that nodes inside a given community are more likely to be connected to
each other than to nodes outside that community.

Probability p ∈ (0, 1) of being connected to a node within your community,
and q ∈ (0, p) of being connected to a node outside your community.

Leads to a matrix optimization problem: relaxation of a
maximum-log-likelihood formulation.

Wright (UW-Madison) Optimization and Data Analysis October 2018 23 / 40

Deep Learning

output nodes

input nodes

hidden layers

Inputs are the vectors aj , out-
puts are odds of aj belonging
to each class (as in multiclass
logistic regression).

At each layer, inputs are con-
verted to outputs by a linear
transformation composed with
an element-wise function:

a`+1 = σ(W `a` + b`),

where a` is node values at
layer `, (W `, b`) are parame-
ters in the network, σ is the
element-wise function.

Wright (UW-Madison) Optimization and Data Analysis October 2018 24 / 40

Deep Learning

The element-wise function σ makes transformations to scalar input.
Nowadays, the ReLU / hinge function is almost always used:

t → max(t, 0).

DNN architectures are engineered to the application (speech processing,
object recognition, . . .).

local aggregation of inputs: pooling;

restricted connectivity + constraints on weights (elements of W `

matrices): convolutions.

connections that skip a layer: ResNet. Each layer fits the “residual”
of the fit from the layer below.

Wright (UW-Madison) Optimization and Data Analysis October 2018 25 / 40

Training Deep Learning Networks

The network contains many parameters — (W `, b`), ` = 1, 2, . . . , L in the
notation above — that must be selected by training on the data (aj , yj),
j = 1, 2, . . . ,m. Objective has the form:

1

m

m∑
j=1

h(x ; aj , yj)

where x = (W 1, b1,W 2, b2, . . .) are the parameters in the model and h
measures the mismatch between observed output yj and the outputs
produced by the model (as in multiclass logistic regression).

Number of parameters (elements in x) is often vastly greater than the
number of data points — overparametrization.

Nonlinear, Nonconvex, usually Nonsmooth.

Many software packages available for training: Caffe, PyTorch, Tensor
Flow, Theano,... Many run on GPUs.

Wright (UW-Madison) Optimization and Data Analysis October 2018 26 / 40

DNN Training: Stochastic Gradient

DNNs are trained almost exclusively with some variant of stochastic
gradient (SGD). Steps have the form xk+1 ← xk − αkgk , where

gk :=
1

Bk

∑
j∈Bk

∇xh(xk ; aj , yj),

and Bk ⊂ {1, 2, . . . ,m} is a randomly sampled “batch.”

Choice of Bk (large or small) and its effect on algorithm speed and
quality of outcome is still being actively investigated!

Choice of αk is called “hyper-parameter optimization” - still
investigated intensely.

Momentum terms sometimes help: add βk(xk − xk−1).

Results are evaluated not by success in reducing the objective, but by
prediction performance on a test set similar to the training set.

Wright (UW-Madison) Optimization and Data Analysis October 2018 27 / 40

Issue 1: Adam!

In early 2015 the paper [Kimgma and Ba, 2015] appeared, describing a
modification of SGD which applies a diagonal scaling to the update gk .

The scaling is computed from a weighted average of components of gk ,
and their squares, from previous iterations.

There is convergence theory but it is unclear.

It has become a juggernaut, with over 16,000 citations (as of yesterday).
Apparently it has some practical relevance.

Wright (UW-Madison) Optimization and Data Analysis October 2018 28 / 40

Issue 2: DNN Training via MIP!
[Fischetti and Jo, 2017] recently proposed to use MIP to train DNNs with
ReLU activations. For each item of data a = a0 have variables:

akj : Output of neuron j in layer k (must be nonnegative).

skj : In the event that akj = 0, this captures the negative part of the
input to neuron j in layer k .
zkj : Binary variable, set to 1 if the input to neuron j in layer k is
negative, and 0 otherwise.

The operation of layer k is captured in the following formulae:
nk−1∑
i=1

W k−1
ij ak−1

i + bk−1
j = akj − skj ,

akj , s
k
j ≥ 0, zkj ∈ {0, 1},

zkj = 1→ akj ≤ 0,

zkj = 0→ skj ≤ 0.

One set of variables for each data item a0
j . Only works for small problems!

Wright (UW-Madison) Optimization and Data Analysis October 2018 29 / 40

Issue 3: Overparametrization in Neural Networks

The total number of weights (W `, g `), ` = 1, 2, . . . , L exceeds the number
of data items, sometimes by factors of 10− 100.

Training such networks can often achieve “zero loss,” that is, all items in
the training data set are correctly classified. Two big questions arise.

1. Isn’t this overfitting? Yet such models often predict well on
non-training data, flouting conventional wisdom. Mystery!

2. Why is Stochastic Gradient (SGD) reliably finding the global
minimum of the nonsmooth, nonlinear, nonconvex training problem?

We have only started to get some intuition on these issues. See for
example [Li and Liang, 2018], and several papers in the recent NeurIPS.

Wright (UW-Madison) Optimization and Data Analysis October 2018 30 / 40

Overparametrization

One key to understanding overparametrization might be stable activations
of the ReLU neurons in the hidden layers:
For each class, the input t to each neuron tends to remain either negative
or positive throughout training. They always output either 0 (when input
is t < 0) or t (when input is t > 0).

That is, the DNN behaves like a set of overlapping linear networks — one
for each class. (Linear network = sequence of matrix multiplications:
W̄ LW̄ L−1 . . . W̄ 1aj . No nonsmoothness!

Solutions are not uniquely defined; there are many that achieve zero loss.
Which one we find depends on how the weights are initialized.

Wright (UW-Madison) Optimization and Data Analysis October 2018 31 / 40

Overparametrization

Thus, in an overparametrized network, we suspect that:

There are many solutions. As the dimension grows, the “manifold” of
solutions grows to fill the space.

A randomly chosen initial point for the weights will be close to the
solution manifold — closer as the dimension grows.

You don’t have to change many ReLU activations to get from the
initial point to the solution, so nonsmoothness may not be important.

Gradient descent (or stochastic gradient descent with big enough
batches) will get us from the initial point to the solution efficiently.

This remains an active area of investigation, with important consequences
for the understanding the effectiveness of DNNs!

Wright (UW-Madison) Optimization and Data Analysis October 2018 32 / 40

Issue 4: Adversarial Machine Learning

Easy to fool DNN classifiers with a carefully chosen attack!

(Szegedy et al, Dec 2013): MNIST with carefully chosen perturbations.
NN misclassifies, even though the “correct” answer is visually obvious.

Note that even a large random perturbation is usually OK! But a small,
carefully crafted perturbation causes misclassification.

Wright (UW-Madison) Optimization and Data Analysis October 2018 33 / 40

Adversarial ML: The Issues

1. Can we generate efficiently the “carefully chosen perturbations” that
break the classifier?

I Various optimization formulations have been proposed,
depending on the type of classification.

2. Can we train the network to be robust to perturbations of a certain
size?

I Can use robust optimization techniques (expensive) or selectively
generate perturbed data examples and re-train.

3. Can we verify that a given network will continue to give the same
classification when we perturb a given training example x by any
perturbation of a given size ε > 0?

I Can use MIP, but very expensive even for small networks and
data sets (e.g. MNIST, CIFAR).

Wright (UW-Madison) Optimization and Data Analysis October 2018 34 / 40

Finding Adversarial Perturbations
Given a set of parameters x (e.g. weights in a NN) a data pair (aj , yj),
and a prediction function φ, the “optimal adversarial perturbation” is
obtained by solving

min
v
‖v‖ s.t. φ(aj + v) 6= yj .

Generally, this is a hard problem. But one special case is easy.

Suppose that we have two classes ±1, and that

φ(a) := signJ(a; x),

for some smooth function J. Thus, the optimal adversarial perturbation
will be the smallest v such that J(aj + v ; x) = 0. Since J is smooth, we
can write

J(aj + v ; x) ≈ J(aj ; x) + vT∇aJ(aj ; x),

so the approximate solution is

v = −J(aj ; x)
∇aJ(aj ; x)

‖∇aJ(aj ; x)‖2
.

Wright (UW-Madison) Optimization and Data Analysis October 2018 35 / 40

Training for Robustness
Instead of incurring a loss h(x ; aj , yj) for parameters x and data item
(aj , yj) as above, define the loss to be the worst possible loss for all a
within a ball of radius ε centered at aj . That is,

max
vj :‖vj‖≤ε

h(x ; aj + vj , yj).

(The norm could be ‖ · ‖2 or ‖ · ‖∞, or something else.)

Training becomes the following min-max problem:

min
x

1

m

m∑
j=1

max
vj :‖vj‖≤ε

h(x ; aj + vj , yj).

The inner “max” problems can at least be solved in parallel,
approximately, and sometimes in closed form.

Subproblems yield a generalized gradient w.r.t. x . We can use this to
implement a first-order method for the outer loop. Expensive in general!

Wright (UW-Madison) Optimization and Data Analysis October 2018 36 / 40

Sparsity and Stability Make Verification Easier

Networks can be trained in a way that makes them easier to check
[Xiao et al., 2018]. Verification is slow because a perturbation in aj may
cause activations to change, moving across the kink in the function
max(t, 0).

Verification is easier when

Sparsity: weight matrices W ` are sparse — a lot of missing arcs in
the NN, so fewer ReLU neurons to check. Promote sparsity via
regularizers ‖W `‖1.

Promoting ReLU stability during training: choose weights W `,
` = 1, 2, . . . , L so that fewer examples aj change activation. Use
interval arithmetic + regularization.

Tutorial by Z. Kolter and A. Madry presented at NeurIPS last week:
https://adversarial-ml-tutorial.org/

Wright (UW-Madison) Optimization and Data Analysis October 2018 37 / 40

https://adversarial-ml-tutorial.org/

Issue 5: Reinforcement Learning vs Control

Reinforcement Learning (RL): kind of ML with high-profile recent success
(e.g. AlphaGo, Backgammon.)

Suited to a situation in which there is a set of states and a set of possible
actions (moves). The following recurs indefinitely:

At state sk , Take an action / make a move ak ;

Incur a cost g(sk , ak) and go to a new state sk+1, which depends on
(sk , ak).

Aim for a policy for choosing ak given sk that minimizes cost incurred over
the long run (e.g. average cost per move).

Generally don’t know cost g or the mapping (sk , ak)→ sk+1 in advance;
must be learned from experience.

RL usually seeks the policy directly.

Implements a policy for a certain number of steps and observes costs;

Can use gradient or derivative-free techniques to find better policies.

Wright (UW-Madison) Optimization and Data Analysis October 2018 38 / 40

Control Perspective on RL

The setup is very similar to control problems, especially optimal control
and model-predictive control (MPC), for which efficient optimization
methods are available.

But these methods require knowledge of costs g and transition dynamics
(sk , ak)→ sk+1! They must be preceded by a system identification process
that learns these quantities.

[Recht, 2018] studies the simplest variant (quadratic cost, linear dynamics)
and concludes that control strategies are superior to RL.

See illuminating discussions from Bertsekas at CDC on 12/16/18:
http://web.mit.edu/dimitrib/www/Slides_RL_and_Optimal_Control.pdf

Wright (UW-Madison) Optimization and Data Analysis October 2018 39 / 40

http://web.mit.edu/dimitrib/www/Slides_RL_and_Optimal_Control.pdf

Summary

Optimization provides powerful frameworks for formulating and solving
problems in data analysis and machine learning.

Usually not enough to formulate these problems and use off-the-shelf
optimization software to solve them. The algorithms need to be
customized to the problem structure and context.

Research in this area has exploded over the past decade and is still going
strong, with a many unanswered questions — many of them in deep
learning.

Wright (UW-Madison) Optimization and Data Analysis October 2018 40 / 40

References I

Balzano, L., Nowak, R., and Recht, B. (2010).
Online identification and tracking of subspaces from highly incomplete information.
In 48th Annual Allerton Conference on Communication, Control, and Computing, pages
704–711.
http://arxiv.org/abs/1006.4046.

Balzano, L. and Wright, S. J. (2014).
Local convergence of an algorithm for subspace identification from partial data.
Foundations of Computational Mathematics, 14:1–36.
DOI: 10.1007/s10208-014-9227-7.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992).
A training algorithm for optimal margin classifiers.
In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages
144–152.

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011).
Robust principal component analysis?
Journal of the ACM, 58.3:11.

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. (2011).
Rank-sparsity incoherence for matrix decomposition.
SIAM Journal on Optimization, 21(2):572–596.

Wright (UW-Madison) Optimization and Data Analysis October 2018 1 / 4

References II

Cortes, C. and Vapnik, V. N. (1995).
Support-vector networks.
Machine Learning, 20:273–297.

d’Aspremont, A., Banerjee, O., and El Ghaoui, L. (2008).
First-order methods for sparse covariance selection.
SIAM Journal on Matrix Analysis and Applications, 30:56–66.

d’Aspremont, A., El Ghaoui, L., Jordan, M. I., and Lanckriet, G. (2007).
A direct formulation for sparse PCA using semidefinte programming.
SIAM Review, 49(3):434–448.

Dasu, T. and Johnson, T. (2003).
Exploratory Data Mining and Data Cleaning.
John Wiley & Sons.

Fischetti, M. and Jo, J. (2017).
Deep neural networks as 0− 1 mixed integer linear programs: A feasibility study.
Technical Report arXiv:1712.06174, DEI, University of Padova.

Friedman, J., Hastie, T., and Tibshirani, R. (2008).
Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432–441.

Wright (UW-Madison) Optimization and Data Analysis October 2018 2 / 4

References III

Kimgma, D. P. and Ba, J. (2015).
Adam: A method for stochastic optimization.
In Proceedings of International Conference on Learning Representations.

Li, Y. and Liang, Y. (2018).
Learning overparametrized neural networks via stochastic gradient descent on structured
data.
Technical Report arXiv:1808.01204, University of Wisconsin-Madison.

Recht, B. (2018).
A tour of reinforcement learning: The view from continuous control.
Technical Report arXiv:1806.09460, University of California-Berkeley.

Recht, B., Fazel, M., and Parrilo, P. (2010).
Guaranteed minimum-rank solutions to linear matrix equations via nuclear norm
minimization.
SIAM Review, 52(3):471–501.

Stigler, S. M. (1981).
Gauss and the invention of least squares.
Annals of Statistics, 9(3):465–474.

Xiao, K. Y., Tjeng, V., Shaflullah, N. M., and Madry, A. (2018).
Training for faster adversarial robustness verification via inducing ReLU stability.
Technical Report arXiv:1809.03008, MIT.

Wright (UW-Madison) Optimization and Data Analysis October 2018 3 / 4

References IV

Wright (UW-Madison) Optimization and Data Analysis October 2018 4 / 4

	Appendix

